Introduction to GPON and XGS-PON Protocols

Moderator: Larry Scheck – TraceSpan larry.scheck@tracespan.com

Presenter : Oded Hadass - TraceSpan oded.hadass@tracespan.com

Access Network Visibility

Agenda (1 hour)

- Webinar Introduction
- Introduction to the GPON protocol
- Introduction to XG-PON and XGS-PON
- GPON and XGS-PON Comparison
- Questions

©TraceSpan Communications

Agenda (1 hour)

- Webinar Introduction
- Introduction to the GPON protocol
- Introduction to XG-PON and XGS-PON
- GPON and XGS-PON Comparison
- Questions

©TraceSpan Communications

Introduction

Access Network Visibility

TraceSpan has for over 18 years been in the business of providing non-intrusive access troubleshooting and analysis tools.

For more than ten years Oded Hadass has been the Director of Product Management for TraceSpan's portfolio of GPON, NG-PON, G.fast and xDSL test products.

Oded's vast expertise in access technologies enables him to support both service providers and vendors in solving their own technical challenges.

Agenda (1 hour)

- Webinar Introduction
- Introduction to the GPON protocol
- Introduction to XG-PON and XGS-PON
- GPON and XGS-PON Comparison
- Questions

©TraceSpan Communications

Introduction to the GPON Protocol

- GPON Transmission Basics Downstream and Upstream
- AES Encryption
- ONU Activation Process
- GPON Network Hierarchy T-CONTs and GEM Ports
- Control Messages

Passive Optical Networks (PON)

- Passive point-to-multipoint infrastructure
 - A single fiber and a single OLT interface to serve multiple ONUs
 - Passive (unpowered) optical splitters

GPON Highlights

- Support for asymmetric line rate operation, 2.488 Gbit/s D/S and 1.244 Gbit/s U/S rates
- Downstream wavelength 1490 nm
- Upstream wavelength 1310 nm
- Option for "RF" Video overlay: wavelength 1550 nm
- Up to 128 ONUs per fiber tree but 32 or 64 is more typical.
- 28 dB optical budget to support 20 km reach and 1:32 split ratio
- First standards published in 2003-2004 by ITU-T, current standards are from 2014

[©]TraceSpan Communications

GPON Transmission Basics – Downstream

- Point to Multi-Point
- Every ONU gets all the transmissions
- Security addressed by AES (Advanced Encryption Standard, 128-bit key)

Optical Signal Flow and Isolation

GPON Security Threat Model

 The basic concern in PON is that the downstream data is broadcast to all ONUs attached to the PON – if a malicious user were to re-program his ONU, then the malicious user could listen to all the downstream data of all the users

AES Encryption

1. The OLT initiates the process – requests a key from the ONU

©TraceSpan Communications

AES Encryption

- 1. The OLT initiates the process requests a key from the ONU
- 2. The ONU generates the key and sends it to the OLT

©TraceSpan Communications

AES Encryption

- 1. The OLT initiates the process requests a key from the ONU
- 2. The ONU generates the key and sends it to the OLT
- 3. The OLT defines the Key Switching Time and the encrypted ports and notifies the ONU

©TraceSpan Communications

GPON Encryption Messages – Example

OLT/0	OLT/ONU (16) 🔽 G-PON 🔹 Signaling 💽 🍋 🏴 🕨 🛗 酸 🝸 😵									
I of 1 of 1 ▷ ▷I ○										
Line #	p	Message #	Time		ONU ID	Message Type	Me	ssage Source	Direction	
10		🗬 84	00:01:05.475625	16		Request Key	PLO	AM Message	Downstream	
11		Q 1	00:01:05.477394	16		Encryption Key	PLO	AM Message	Upstream	
12		Q 2	00:01:05.477522	16		Encryption Key	PLO	AM Message	Upstream	
13		Q 3	00:01:05.477631	16		Encryption Key	PLO	AM Message	Upstream	
14		4	00:01:05.477752	16		Encryption Key	PLO	AM Message	Upstream	
15		Q 5	00:01:05.477905	16		Encryption Key	PLO	AM Message	Upstream	
16		Q 6	00:01:05.478020	16		Encryption Key	PLO	AM Message	Upstream	
17		🗬 85	00:01:05.482625	16		Key switching Time	PLO	AM Message	Downstream	
18		🔍 86	00:01:05.482750	16		Key switching Time	PLO	AM Message	Downstream	
19		🗬 87	00:01:05.482875	16		Key switching Time	PLO	AM Message	Downstream	
20		7	00:01:05.486386	16		Acknowledge	PLO	AM Message	Upstream	
21		💭 8	00:01:05.486531	16		Acknowledge	PLO	AM Message	Upstream	
22		9	00:01:05.486631	16		Acknowledge	PLO	AM Message	Upstream	
	Det	- DIOMA	Manage Trans							
	Dat	PLOAM	viessage Type		N 1			D is		
Key Ing	lev				Value			Description		
Fragm	ent l	ndex			0					
Key By	tes				0x1788D479F4F531E	9				

GPON Transmission Basics - Upstream

- TDMA (Time Division Multiple Access) mechanism:
 - The OLT assigns timeslots (BWmaps) for every ONU to transmit its upstream transmissions to ensure collision-free transmission
 - During the ONU activation process, the OLT assigns an Equalization Delay to each ONU to compensate for different distances from the OLT, meaning different delays

ONU Activation Process

- Defined in G.984.3, clause A.6 and Figure A.5
- Defines a state machine with 5 states:
 - Initial state (01)
 - Standby state (O2)
 - Serial Number state (O3)
 - Ranging state (O4)
 - Operation state (O5)

Notes:

- 1. The **ONU Bring-up** process includes the ONU activation process, followed by some OMCI message exchange. It is described in G.988 and will be covered separately later on.
- There are two additional states that the ONU can transition to, but are not part of the activation – POPUP state (O6) and Emergency Stop State (O7)

Important Terms

PSync

- Physical Synchronization a fixed 32-bit pattern (0xB6AB31E0) that begins every downstream frame
- The ONU uses this pattern to find the beginning of the frame

Preamble and Delimiter

- Each upstream burst begins with the upstream physical layer overhead (PLOu) section which is composed of preamble, delimiter and the 3-byte burst header
- The preamble is used to identify the start of the upstream burst at the physical layer, the delimiter identifies the start of the frame at the GTC (MAC) layer

Burst	Burst mode overhead			Burst header _ GTC o			overhead GTC payload		l		
Guard time	Preamble Delimiter		BIP	ONU-ID	Ind	PLOAMu	DBRu	Payload	Payload DBRu Payload		
		PLOu			,	Allo	cation inte	rval	Alloca	tion interval	
						Burst			I		
ľ	ř							10		G.984.3(14)_F8-8	
								18			Access Network Visibility

ONU Activation Process – Full Activation Process Flow Diagram

Figure A.5 - Activation process flow

19

ONU Activation Process – States 01, 02

©TraceSpan Communications

ONU Activation Process – State O3

ONU Activation Process – Example

OLT			G-PON	• Signaling •	🞨 🖻 🖻 👘	H 🖓 🔻			
I	◀ 1	of 1 📄	▶ ∘						
Line #	🗊 Message #	Time	ONU ID	Message Typ	De Message Source	Direction			
56	50	00:00:30.731000	Broadcast Message	Upstream Overhea	d PLOAM Message	Downstream			
57	Q 51	00:00:30.731125	Broadcast Message	Upstream Overhea	d PLOAM Message	Downstream			
58	Q 52	00:00:30.731250	Broadcast Message	Upstream Overhea	d PLOAM Message	Downstream			
59	Q 53	00:00:30.880750	Broadcast Message	Extended Burst Le	ngth PLOAM Message	Downstream			
60	Q 54	00:00:30.880875	Broadcast Message	Extended Burst Le	ngth PLOAM Message	Downstream			
61	Q 55	00:00:30.881000	Broadcast Message	Extended Burst Le	ngth PLOAM Message	Downstream			
62	Q 56	00:00:31.021500	ONU Activation ID	Serial Number Rec	uest BWmap Event	Downstream			
63	Q 1	00:00:31.021555	Unassigned ONU ID	Serial number ON	U PLOAM Message	Upstream			
64	4 57	00:00:31.221750	ONU Activation ID	Serial Number Rec	uest BWmap Event	Downstream			
65	Q 2	00:00:31.221805	Unassigned ONU ID	Serial number ON	U PLOAM Message	Upstream			
66	58	00:00:31.421500	ONU Activation ID	Serial Number Rec	uest BWmap Event	Downstream			
67	🗬 3	00:00:31.421555	Unassigned ONU ID	Serial number ON	U PLOAM Message	Upstream			
68	Q 59	00:00:31.621625	Broadcast Message	Assign ONU-ID	PLOAM Message	Downstream			
69	@ 60	00:00:31.621750	Broadcast Message	Assign ONU-ID	PLOAM Message	Downstream			
70	Q 61	00:00:31.621875	Broadcast Message	Assign ONU-ID	PLOAM Message	Downstream			
71	Q 62	00:00:31.821750	8	Ranging Request	BWmap Event	Downstream			
72	Q 1	00:00:31.821786	8	Serial number ON	U PLOAM Message	Upstream			
73	Q 63	00:00:31.822875	8	Ranging Time	PLOAM Message	Downstream			
74	64	00:00:31.823000	8	Ranging Time	PLOAM Message	Downstream			
75	4 65	00:00:31.823125	8	Ranging Time	PLOAM Message	Downstream			
4	Data PLOAM	Message Type							
Name			Value		Description				
Path Ec	D Descriptor		Main Path EqD						
Delay	Delay 309660								

Access Network Visibility

Traffic Containers (T-CONT)

- T-CONT: A grouping of logical connections for the purpose of upstream bandwidth assignment
 - Definition from TR-156: A traffic-bearing object within an ONU that represents a group of logical connections, is managed via the ONU Management and Control Channel (OMCC), and is treated as a single entity for the purpose of upstream bandwidth assignment on the PON

• 5 T-CONT types are defined in ITU-T G.984.3

- Type 1 = Fixed bandwidth
- Type 2 = Assured bandwidth
- Type 3 = Assured & Non-Assured bandwidth
- Type 4 = Best effort
- Type 5 = Fixed, Assured and Non-Assured

Bandwidth Assignments for T-CONTs

• TDMA (Time Division Multiple Access) mechanism:

- The OLT assigns timeslots (BWmaps) for every ONU to transmit its upstream transmissions,
- Every BWmap assignment includes the T-CONT ID (Alloc-ID)

Downstream BWmaps and Upstream Frames

BWmaps and Corresponding Upstream Transmissions

OLT					G-PON 🔹 Data	- 43	. ₽P ▶ d	1 B 7 7	🕅 🌄 Timestam	p 🕜 💵
	<		100 of 2181							_
Line #	p	t)	Packet No.	Timestamp	PLOAM ONU ID	BWmap	TCONT-ID	FRAME	SLOT	Direction
21	-		32159	00:00:04.021909	N.A.	N.A.	260	32173	34	Upstream
22			Q 1628	00:00:04.021998	N.A.	N.A.	257	32173	13874	Upstream
23			Q 32177	00:00:04.022000	Broadcast Message	3	N.A.	32176	0	Downstream
24			Q 2030	00:00:04.022034	N.A.	N.A.	2	32174	34	Upstream
25			Q 32160	00:00:04.022035	N.A.	N.A.	260	32174	174	Upstream
26			🗬 32178	00:00:04.022125	Broadcast Message	2	N.A.	32177	0	Downstream
27			🗬 32161	00:00:04.022159	N.A.	N.A.	260	32175	34	Upstream
28			🗬 19313	00:00:04.022248	N.A.	N.A.	261	32175	13875	Upstream
29			🗬 32179	00:00:04.022250	Broadcast Message	2	N.A.	32178	0	Downstream
30			🗬 32162	00:00:04.022284	N.A.	N.A.	260	32176	34	Upstream
31			Q 2012	00:00:04.022373	N.A.	N.A.	4	32176	13847	Upstream
32			💭 19314	00:00:04.022374	N.A.	N.A.	261	32176	13981	Upstream
33			💭 32180	00:00:04.022375	Broadcast Message	1	N.A.	32179	0	Downstream
	Da	+- 2	Playman							
	Da	la/	Name			Malus				
BW	Ma	p Aq	cess 1			Value				
	Allo	catio	on ID		260					
\$	Starl	Tim	e field		34					
	Stop	Tim	e field		13839					
	Allo	p Ao catio	n ID		4					
- 9	Start	Tim	e field		13840					
	Stop	Tim	e field		13945					
BW	Ma	p Ao	cess 3		261					
	Star	Tim	e field		13980					
	Stop	Tim	e field		19423					

Access Network Visibility

Dynamic Bandwidth Allocation (DBA)

- Not all users and all services need all their peak bandwidth all the time
 - Fixed bandwidth allocations are inefficient
- Dynamic bandwidth allocation is needed to optimize bandwidth usage of the shared medium
 - With DBA, the OLT assesses the bandwidth needs of all ONTs and allocates available bandwidth dynamically
- Allows service providers to define flexible service options, oversubscription levels and Service Level Agreements

GPON Encapsulation Method (GEM) and Multiplexing Model

- GEM is a method for encapsulating user frame data for transport over the GPON
- "GEM ports" represent a logical connection associated with a specific traffic flow

Control Messages

- Physical layer OAM (PLOAM) messaging channel
 - Supports the PON TC layer management functions, including ONU activation/deactivation, OMCI channel establishment, encryption configuration and key management
 - Transported in the 13-byte PLOAM message field within the overhead section of the downstream GTC frame and default Alloc-ID of the upstream GTC burst
 - Specified in ITU-T G.984.3
- ONU management and control interface (OMCI)
 - OMCI messages are transported over a dedicated GEM channel. The OMCI transport mechanism is described in ITU-T G.984.3 clause 14
 - The syntax of the OMCI is specified in ITU-T G.988

Agenda (1 hour)

- Webinar Introduction
- Introduction to the GPON protocol
- Introduction to XG-PON and XGS-PON
- GPON and XGS-PON Comparison
- Questions

Introduction to XG-PON and XGS-PON

- History and Market Drivers
- Technology and Protocol Highlights
- Burst Profiles and Dual-Rate Support

Beyond GPON – Main Market Drivers

- Competition
- Business services
- Backhaul for 4G and 5G wireless networks

33

XG-PON1, XGS-PON and NG-PON2 Definitions and Standardization History

XG-PON1 – Highlights

- Downstream 10 Gb/s (9.95328 Gb/s)
- Upstream 2.5 Gb/s (2.48832 Gb/s)
- Other major enhancements compared to GPON:
 - 29 dB optical budget
 - Split ratio up to 1:256
 - Extended power saving modes
 - Enhanced security

XG-PON1 – Framing and TDMA Control

- Reuse and adaptation of the GPON protocol
- More flexible PLOAM channel
 - Multiple messages in the same frame
 - Extended PLOAM message length 48 bytes compared to 13 bytes in GPON
- Expansion of fields

Example – Multiple PLOAM Messages in One Frame

	Name	Value
Γ	PLOAM Message No. 1 - Burst Profile	
	— ONU ID	1022
	 Message ID 	Burst Profile
	 Sequence Number 	208
	— Version	14
	 Line Rates Applicability 	The profile applies to ONUs transmitting at 10G upstream
PLOAM Message	 Profile Index 	2
	- FECInd	0
NO. L	 Delimiter Length 	8
	— Delimiter	0xCE99CE5E5028B41F
	 Preamble Length 	8
	 Preamble Repeat 	32
	- Preamble	0xCCCCCCCCCCCC
	- PON-TAG	0x4D5432204D543220
L	 Downstream PON ID 	0x00
	PLOAM Message No. 2 - Request Registration	
PLOAM Message	— ONU ID	1
No. 2	— Message ID	Request Registration
	Sequence Number	209

Access Network Visibility

XGS-PON – Highlights

- Downstream 10 Gb/s (9.95328 Gb/s)
- Upstream 10 Gb/s (9.95328 Gb/s) or 2.5 Gb/s (2.48832 Gb/s) support for two types of ONUs on the same PON
- Protocol and frame structure similar to XG-PON1, but minor differences

XGS-PON – Profiles and Dual Rate Support

- The Burst Profile PLOAM message specifies parameters for upstream transmission, including:
 - The upstream line rate 10 Gb/s or 2.5 Gb/s
 - The Preamble and Delimiter
 - If FEC is to be used in the upstream
- There may be several different profiles simultaneously on the PON, each with its own index
- Each BWmap allocation specifies the profile index for the upstream transmission

XGS-PON – Profiles and Dual Rate Support

- The same index may be used for two burst profiles simultaneously, one for 10 Gb/s upstream and the second for 2.5 Gb/s upstream
- The Quiet Window BWmap specifies which type of ONUs should respond using a different broadcast Alloc-ID:
 - Alloc-ID 1022: ONUs transmitting at 10 Gb/s
 - Alloc-ID 1023: ONUs transmitting at 2.5 Gb/s
 - Alloc-ID 1021: Both types of ONUs (shall not be used for the case of XGS-PON interworking with XG-PON1)

XGS-PON Quiet Window BWmap ("Serial Number Grant") Example

OLT			NG-PON	- Signaling - 💽	P 🕨 🚺	🐧 🍸 🐨 🔁 ті
I	⊲	1 of 1				
Line #	μ	Time	ONU ID	Message Type	Message Source	SFC
20		🗬 00:00:04.624886	Broadcast Message	Burst Profile	PLOAM Message	1501202822958246
21		00:00:05.624886	Broadcast Message	Burst Profile	PLOAM Message	1501202822966246
22		00:00:05.626886	Broadcast Message	Burst Profile	PLOAM Message	1501202822966262
23		00:00:05.628886	Broadcast Message	Burst Profile	PLOAM Message	1501202822966278
24		00:00:06.370011	Broadcast Message	Serial Number Grant	BWmap Event	1501202822972207
25		Q 00:00:06.370015	Broadcast Message	Serial number ONU	PLOAM Message	1501202822972207
26		💭 00:00:06.479886	Broadcast Message	Assign ONU-ID	PLOAM Message	1501202822973086
27		💭 00:00:06.490136	Broadcast Message	Serial Number Grant	BWmap Event	1501202822973168
28		00:00:06.600011	Broadcast Message	Serial Number Grant	BWmap Event	1501202822974047
29		Q 00:00:06.628886	Broadcast Message	Burst Profile	PLOAM Message	1501202822974278
4	Dat	ta BW Maps				
Name			Value	De	scription	
Alloc-I	D		1022			
DRKU H	-lag Au F	lan	0			
Start Ti	me	log	3			
Grant S	öize		0			
FWI		1-	0			
HEC	rofi	e	U HEC OK			
1120			THEOOR			
Burst Profile Index				Alloc-ID 1022 - transmitting at	for ONUs 10Gb/s	Acce

Agenda (1 hour)

- Webinar Introduction
- Introduction to the GPON protocol
- Introduction to XG-PON and XGS-PON
- GPON and XGS-PON Comparison
- Questions

GPON and XGS-PON Comparison

- Frame and BWmap Structure
- Wavelength Assignment
- PON-ID
- ONU-ID, Alloc-ID and Port ID Value Ranges
- Security Threats and Mechanisms

XG-PON1/XGS-PON – BWmap Structure

- In GPON the BWmap specifies the Start Time and Stop Time for the burst, in XG-PON1/XGS-PON the Start Time and **Grant Size**
- Every XG-PON1/XGS-PON BWmap also specifies the Burst Profile as one of its flags, other flags are also slightly different

Wavelength Assignment

Wavelength (or Range)	Usage
1270 nm	XG-PON1/XGS-PON US
1310 nm	GPON US
1490 nm	GPON DS
1524-1544 nm	NG-PON2 (TWDM) US
1550 nm	Analog ("RF") Overlay DS
1577 nm	XG-PON1/XGS-PON DS
1596-1603 nm	NG-PON2 (TWDM) DS
1603-1625 nm	NG-PON2 (PtP WDM) Shared Spectrum DS and US

PON-ID

- A typical fiber distribution panel or cabinet has hundreds or even thousands of connections, how can you tell which fiber belongs to which PON?
- The PON-ID provides a unique identification to every PON
- Mandatory in XG-PON1/XGS-PON, also added as an amendment to the GPON standard (included in the 2014 version of G.984.3), but <u>defined as optional</u>
- In XG-PON1 and XGS-PON it is part of the downstream frame, in GPON a separate PLOAM message

ONU-ID Values

GPON ONU-ID	XG- PON1 ONU-ID	XGS- PON ONU-ID	Designation	Comment
0253	01022	01020	Assignable	Assigned by OLT at ONU activation; used to identify the sender of an upstream burst or a PLOAMu message and the recipient of a PLOAMd message.
254		1021	Reserved	The number shall not be assigned to any ONU, and shall not be used as an ONU-ID.
		1022	Broadcast/reserved	Broadcast address in PLOAMd; not used in PLOAMu. The number shall not be assigned to any ONU, and shall not be used as an ONU-ID.
255	1023	1023	Broadcast/unassigned	Broadcast address in PLOAMd; unassigned ONU in PLOAMu.

Alloc-ID Values

GPON Alloc-ID	XG- PON1 Alloc-ID	XGS-PON Alloc-ID	Designation	Comment
0253	01022	01020	Default	Default Alloc-ID, which is implicitly assigned with and is equal to the ONU- ID.
254	1023	1021 1022 1023	Reserved/ Broadcast	Used by OLT in a serial number request allocation structure to indicate that any ONU* executing the serial number acquisition phase of the activation procedure may use this allocation to transmit a serial number response.
255			Unassigned	May be used by the OLT to indicate that a particular allocation structure should not be used by any ONU.
256 4095	1024 16383	1024 16383	Assignable	If more than a single Alloc-ID is needed for an ONU, the OLT assigns additional Alloc-IDs to that ONU by selecting a unique number from this range and communicating it to the ONU using the Assign_Alloc-ID PLOAM message.

* In XGS-PON different Broadcast Alloc-IDs are used for ONUs transmitting at different upstream rates

Port-ID Values

GPON Port-ID	XG-PON1 Port-ID	XGS-PON Port-ID	Designation	Comment
	01022	01020	Default	Default XGEM Port-ID, which is implicitly assigned with and is equal to the ONU-ID. It identifies the XGEM port used by the OMCC traffic.
04095	102365534	102165534	Assignable	If more than a single XGEM Port-ID is needed for an ONU, the OLT assigns additional Port-IDs to that ONU by selecting a unique number from this range and communicating it to the ONU using the OMCC. In XGS-PON The values 1021 and 1022 shall not be assigned to XG- PON ONUS.
	65535	65535	Idle	Reserved for Idle XGEM Port-ID.

XG-PON1/XGS-PON – Security (1)

- XGS-PON security is intended to protect against the following threats:
 - Since downstream data is broadcast to all ONUs attached to the OLT, a malicious user capable of replacing or re-programming an ONU would be capable of receiving all downstream data intended for all connected users

XG-PON1/XGS-PON – Security (2)

- XGS-PON security is intended to protect against the following threats (continued):
 - Since upstream data received by the OLT can originate from any ONU attached to the XGS-PON optical distribution network (ODN), a malicious user capable of replacing or re-programming an ONU could forge packets so as to impersonate a different ONU (i.e., theft of service)

XG-PON1/XGS-PON – Security (3)

- XGS-PON security is intended to protect against the following threats (continued):
 - An attacker could connect a malicious device at various points on the infrastructure (e.g., by tampering with street cabinets, spare ports, or fiber cables). Such a device could intercept and/or generate traffic. Depending on the location of such a device, it could impersonate an OLT or alternatively it could impersonate an ONU

XG-PON1/XGS-PON – Security (4)

- XGS-PON security is intended to protect against the following threats (continued):
 - A malicious user in any of the above scenarios could record packets transmitted on the PON and replay them back onto the PON later, or conduct bit-flipping attacks

©TraceSpan Communications

XG-PON1/XGS-PON Security – AES Encryption

- Unlike GPON that supports AES encryption only in the downstream direction, XGS-PON also supports it in the upstream
 - AES encryption is optional
 - In the downstream it is more commonly used than in the upstream
 - XGS-PON supports two keys simultaneously

[©]TraceSpan Communications

XGS-PON AES Encryption Example

OLT/ONU (0)/Alloc-ID (1025)/XGEM/PORT (10	23) 💌 Ethernet	▼ Data	- -	0 🖷 🖋	> 🛍 酸 🍸	\mathbb{Z}	Timestamp	0 🗖	💷 💆 🖉
I									
Protocols 7 ×	Line# 😰 🛟	Time	Destinat	ion MAC A	Source MAC Address	VID	Туре	Length	Direction
Protocol Details	41	💭 00:01:15.192179	33:33:00	:00:00:16	A4:91:B1:56:79:E2	200	IPv6 (0x86DD)	N.A.	Upstream
NG-PON ONU (0)/Alloc-ID (1025)	42	🗬 00:01:15.375268	01:00:5E	:00:00:01	00:90:D0:63:FF:00	200	IPv4 (0x0800)	N.A.	Downstream
XGEM Port 1023	43	🗬 00:01:15.506179	33:33:00	:00:00:16	A4:91:B1:56:79:E2	N.A.	IPv6 (0x86DD)	N.A.	Upstream
XGEM Port 1023	44	🗬 00:01:17.653179	FF:FF:FF	FF:FF:FF	A4:91:B1:56:79:E2	200	IPv4 (0x0800)	N.A.	Upstream
Ethernet Dst: 33:33:00:00:00:16, Src:	45	🗬 00:01:25.672304	FF:FF:FF	FF:FF:FF	A4:91:B1:56:79:E2	200	IPv4 (0x0800)	N.A.	Upstream
IPv6	46	🔍 00:01:44.647554	33:33:00	:00:00:16	A4:91:B1:56:79:E2	N.A.	IPv6 (0x86DD)	N.A.	Upstream
	47	🔍 00:01:45.262554	33:33:FF	:56:79:E2	A4:91:B1:56:79:E2	N.A.	IPv6 (0x86DD)	N.A.	Upstream
	48 🔍 00:01:45.275679 33		33:33:FF	3:33:FF:56:79:E2 A4:91:B1:56:79:E2 2		200	IPv6 (0x86DD)	N.A.	Upstream
	49	💭 00:01:45.400554	33:33:00:00:00:16		A4:91:B1:56:79:E2	N.A.	IPv6 (0x86DD)	N.A.	Upstream
	50	🔍 00:01:45.595679	33:33:00:00:00:16		A4:91:B1:56:79:E2	200	IPv6 (0x86DD)	N.A.	Upstream
	51	51 🔍 00:01:45.677679		:00:00:16	A4:91:B1:56:79:E2	200	IPv6 (0x86DD)	N.A.	Upstream
✓ Data ▷	d Data								
Name Value Description	Name			Value			Description		
PLI 58 Payload Leng	Destination M	AC Address		33:33:00:00:00:	:16		•		
KeyIndex 2	Source MAC A	ddress		A4:91:B1:56:79	:E2				
PortID 1023	VLAN/S-VLAN	l lag lype		0x8100			Outer VLAN 802.1	IQ lag lyp	e
Options 0	VLAN/S-VLAN	i lag Ctri into		0XC8 N			Outer VLAN lag	ity Code E	ormation
HEC 0 Hybrid Error	LF 1 Last Fragment VLAN/S-VLAN PCP			0			Outer VLAN Can	ny couer	nat Identifier
				200			Outer VLAN Iden	tifier	
	Туре			Pv6 (0x86DD)					
	FCS			0xECFB779D			Frame Check Seq	uence	

The XGEM Header Key Index indicates which key is used for encryption Key Index 0 indicates no encryption 55

XG-PON1/XGS-PON – Additional Security Mechanisms

- Authentication the XG-PON1/XGS-PON systems supports three mechanisms for authentication:
 - Registration-based authentication
 - OMCI-based secure mutual authentication
 - IEEE 802.1X-based authentication secure mutual authentication
- MIC the message integrity check is an 8-byte field that is used to verify the sender's identity and to prevent a forged PLOAM message attack

TraceSpan Products

• Lab

- NG-PON Xpert[™]
 - Multi-layer analyzer
 - Multi-ONU Emulator
 - OLT Emulator
- GPON Xpert[™]
 - Multi-layer analyzer
 - OLT Emulator

Field

GPON Tracer[™]

Xpert™ Analyzers and Emulators

GPON Tracer™

Agenda (1 hour)

- Introduction
- Introduction to the GPON protocol
- Introduction to XG-PON and XGS-PON
- GPON and XGS-PON Comparison
- Questions

Access Network Visibility

Access Network Visibility

59

Thank you for attending

If you would like additional information about TraceSpan products:

www.tracespan.com

info@tracespan.com

